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Coordination can greatly improve the efficiency of anti-predatory vigilance scans by increasing predator
detection for a constant proportion of time spent vigilant. However, it has been rarely found in nature
and most studies have detected or assumed independent scanning by group members. In this study, we
analysed the functional consequences of the coordinated alternation of vigilance scanning by group for-
agers. We introduce coordination by assuming that interscan intervals (ISIs) follow a modified gamma
distribution. Depending on the parameters of the distribution, successive scans can be evenly spaced
(coordinated scanning) or may present a high overlap (uncoordinated scanning). Comparing evolutionarily
stable strategies for animals that do not coordinate their scanning with animals that do coordinate their
anti-predator behaviour shows that coordination has a marked effect on survival probability. Moreover,
the coordinating strategy is quite robust against mutants that scan independently with exponential distri-
butions of ISIs. However, coordination breaks down when animals can continuously adjust their level of
coordination by deciding the proportion of time they spend monitoring the behaviour of other group
members. In this case, coordination is only evolutionarily stable if it can be very easily achieved.

Keywords: anti-predator behaviour; evolutionarily stable strategies; game theory; group size;
vigilance scan

1. INTRODUCTION

Anti-predator vigilance in social foragers is a conspicuous
and well-studied behaviour in a variety of vertebrates. By
increasing survival through predator detection, vigilance
has a clear positive effect on an animal’s fitness. Theoreti-
cal models of social vigilance assume independent scan-
ning by group members (e.g. Pulliam 1973; Pulliam et al.
1982), although there is no functional (evolutionary)
analysis of this assumption (Bednekoff & Lima 1998).
Independent scanning diminishes the probability of pred-
ator detection by group members (Ward 1985; Lima
1990), so that if detection information was rapidly shared
among group members, predator avoidance would
increase significantly if group members coordinate their
vigilance (Bednekoff & Lima 1998). Therefore, vigilance
coordination, i.e. the alternation of vigilance events into
non-overlapping bouts, seems to have an obvious adaptive
advantage. However, vigilance coordination has not been
detected (e.g. Elcavage & Caraco 1983). Why is this so?
There are at least two possibilities. Either coordination is
not very efficient or it is too costly to achieve (Ward 1985;
Lima 1995). Coordination would be inefficient if there
was poor information sharing or if it did not lead to a
significant increase in the probability that predators are
detected by at least one group member. The former possi-
bility seems unlikely, for two reasons. First, the ubiquitous
group-size effect (Lima 1990, 1995; Roberts 1996) is
often predicted if detection by an individual improves the
probability that other group members survive (see Lima
(1990) for other factors that influence the group-size
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effect). Second, in several species that form small foraging
groups, say of two to eight individuals, information trans-
fer seems to be adequate (e.g. Kenward 1978; Godin et
al. 1988; Vásquez 1997). Ward (1985) suggests that coor-
dination does not greatly increase the probability that the
group detects the predator. In his analysis, Ward (1985)
assumes that the goal of group members is to ensure that
the proportion of time that no individual of the group is
vigilant does not exceed a certain value. He then calculates
the proportion of time that each individual must scan for
predators in order to achieve this goal, with and without
coordination. He found that coordination leads to a tiny
decrease in individual scanning time. Ward (1985) there-
fore concludes that any small cost associated with coordi-
nation will offset its benefits. It is important to notice that
the probability of not detecting a predator is not directly
given by the proportion of time that no individual group
member is scanning. Indeed, if one of two foraging groups
produces a scan of 1 s every 10 s, and the other a scan
of 10 s every 100 s, the proportion of time that no group
member scans is the same for both groups, while pre-
dation rate is most probably very different. Scannell et al.
(2001) suggest that the observed distribution of anti-
predator scans would be beneficial if predators studied the
behaviour of individual prey and timed their attacks
accordingly. If, however, prey scanned following a Poisson
process as it is normally assumed, there would be no
incentive for predators to spend time observing prey, pred-
ators would be selected to attack prey as soon as they
detected them, and prey would be selected to scan at reg-
ular intervals. It seems to us, therefore, that the solution
proposed by Scannell et al. (2001) is not evolutionarily
stable.
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The aim of this paper is to quantify how costly coordi-
nation must be to make it evolutionarily unstable when
we take into account not only the proportion of time spent
scanning, but also the temporal distribution of anti-
predator scans. To study the problem of coordination of
anti-predator scans in groups of foraging animals, we pro-
ceed in two directions. We first compare the expected fit-
ness of animals that either participate or do not participate
in the coordination of scanning events, and then we
develop a model where individuals must determine how
much of their time they spend foraging, how much scan-
ning and how much coordinating their behaviour. In this
model, we assume that the degree of coordination that
ensues is a certain function of the time that individuals
spend coordinating their behaviour, and we look for evol-
utionarily stable values of the proportion of time spent
scanning for predators and coordinating anti-predator
behaviour. Our approach is focused on social foragers that
form loose foraging groups and take advantage of the
group-size effect on vigilance behaviour, as occurs in sev-
eral species of birds (e.g. Bertram 1980; Lima 1995) and
mammals (e.g. Monaghan & Metcalfe 1985; Vásquez
1997).

2. BASIC MODEL

The idea is to introduce the possibility to coordinate
behaviour in as simple a model as possible. For this rea-
son, we start with a game-theory model almost identical
to the one by Pulliam et al. (1982). The basic model
assumes that n individuals are foraging in a group. Individ-
ual i spends a proportion wi of its time scanning for pred-
ators: a scan has a fixed duration � and the interval
between consecutive scans of an individual is a random
variable, which is drawn from some distribution.
(Different versions of the model will make different
assumptions about the shape of this distribution.) Pred-
ators need some time T to approach the foraging group.
Any overlap between this approach time and a vigilance
scan implies that the predator is detected. If, however, no
individual is scanning for any fraction of the approach
time, the predator is not detected. We call � the prob-
ability that the predator is not detected. It is a function of
how interscan intervals (ISIs) are distributed.

(a) Predator detection
We calculate the probability � for two distributions of

ISIs. If scan initiation by each individual follows a Poisson
process and predator detection works independently for
different animals, then (see, for example, Pulliam et al.
1982; McNamara & Houston 1992)

� = ��
i

(1 � wi )� × exp��
T
�
�
i

wi
1 � wi

�. (2.1)

Equation (2.1) underlies most models of the evolution
of vigilance behaviour. As Bednekoff & Lima (1998) point
out, although the experimental data tend to support the
assumption of an (almost) exponential distribution of ISIs
with independent behaviour between group members,
there is no identified functional reason why this should
be so.
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To introduce the possibility of coordinated scanning,
we proceed as follows. Rather than taking into account
how the scanning events of each individual are distributed
in time, we look at the group-level distribution of scans.
Thus, if there are n animals foraging in a group, we look
at the times t1, t2…, ti when the first, second…, ith scan
events are initiated, regardless of which animal performs
each event. We call ISIs the times t2 � t1, t3 � t2…,
ti�1 � ti. Coordinated scanning is achieved when these
ISIs are relatively homogeneous. We use the coefficient of
variation (standard deviation/mean), �, of the distribution
of ISIs as an index of coordination. When � = 0 there is
no variability in the ISI and coordination is perfect. We
will say that there is no coordination if � = 1. (In principle,
the distribution of ISIs may have � � 1, but we will not
consider this possibility here because the exponential dis-
tribution considered in previous models has � = 1.) Notice
that we define the ISI as the time between the starts of
two consecutive scans by any individual, and not as the
time between the end of a scan and the start of the follow-
ing one by the same individual. Given a group-level distri-
bution of ISIs, � can be calculated in the manner
described in Appendix A (equation (A 2)).

In practice, the group-level distribution of ISIs must be
the result of individual behaviour. In this article, we do
not propose any mechanism through which individual
behaviour could lead to a gamma distribution of group-
level ISIs. That is, we do not propose any distribution of
individual ISIs such that when all members of a group
behave according to this distribution the group-level ISIs
follow a gamma distribution. We simply explore the
consequences that the existence of such a mechanism
would have.

(b) Probability of survival
We assume that if the predator arrives undetected it

manages to capture a group member with probability 1.
If, however, the predator is detected, we assume that the
probability that it captures a foraging animal is b, with
0 � b � 1. (We will loosely refer to b as the scanning
efficiency.) For simplicity and to minimize the number of
parameters in the model, we assume that when a predator
is detected all group members have the same probability
of escape, regardless of whether they were scanning or not
at the time of the attack. In the case where the predator
succeeds to capture a group member, we assume that its
prey is selected at random. Hence, the probability that a
focal individual survives an attack, s is

s = 1 �
(1 � b) × � � b

n
, (2.2)

where � is given by equation (2.1) or (A 2), as appropriate.
An individual must forage for some fixed time Tf in order
to survive. If an animal spends a proportion u of its time
foraging, then the time Tg that it must remain exposed
to predators to achieve a cumulative time of Tf foraging
seconds is

Tg =
Tf

u
. (2.3)

Pulliam et al. (1982) calculate the relationship between
s and the expected fitness of a strategy as the probability
that an individual survives a number of attacks that is the
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number expected during a time Tg. As McNamara &
Houston (1992) point out, this method overestimates the
probability of predation. If there is a certain probability,
pl, that there are exactly l attacks during Tg, then the prob-
ability that a focal individual survives the day, G, is

G = �
l

pl × sl. (2.4)

If predator arrival follows a Poisson process with rate
	, then

pl =
(	 × Tg)l × e�	 × Tg

l!
, (2.5)

and therefore

G = e�(l × s) × 	 × Tg. (2.6)

McNamara & Houston (1992) offer a method to calcu-
late the evolutionarily stable strategy (ESS) of related
models. Unfortunately, their method assumes that pred-
ator detection works independently for different animals,
so that � is a product of n factors, each factor being the
probability that one animal in the group detects the pred-
ator. Clearly, this assumption does not hold when vigil-
ance is coordinated, so we cannot use the method of
McNamara & Houston (1992) for our study. Instead, we
notice that, for an individual animal, G is maximized when
the quantity


 = 1 �
l � s
u

, (2.7)

is maximized, so we take 
 as the payoff associated with
a strategy and look for the values that lead to its maximum
value. Thus, although G is a function of predation press-
ure 	 and foraging time Tf, the optimal behaviour is inde-
pendent of these parameters and we will therefore ignore
them in the rest of this article.

A strategy will be defined as a combination of three
values, u, w and c, where u is the proportion of time spent
foraging, w the proportion of time spent scanning for
predators and c the proportion of time spent coordinating
anti-predator behaviour. As shorthand, we will refer to c
as the ‘coordination time’. We assume that these activities
are mutually exclusive (but see Lima & Bednekoff 1999)
and that they comprise the entire time budget of foraging
animals, so that u � w � c = 1. Figure 1 shows how G
depends on c and w when the probability that the predator
is not detected is calculated according to equation (A 2).
When drawing figure 1, we have assumed that all group
members behave equally, so it is of no use when comput-
ing the ESS: it is shown merely for illustration purposes.

3. EFFICIENCY OF COORDINATED SCANNING

Ward (1985) claims that the proportion of time spent
scanning for predators required to obtain a certain prob-
ability of detecting predators is virtually the same with and
without coordination. To check this explicitly, we com-
pare the payoffs at the ESS for two sets of strategies: with
and without coordination, and we calculate how much
time needs to be spent in coordination for both payoffs to
be equal. To do this, we calculate the ESS, as a function
of the group size, n, and scanning efficiency, b, when � is
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Figure 1. Contour plot of the probability that a focal
individual survives the day, G, versus c and w, when the ISI
follows a gamma distribution with offset. Parameters are
Tf � 	 = 1, n = 2 and b = 0.3. The relationship between � and
c is � = 0.05 � 0.95 � (1 � c). (Calculations become
inaccurate for very low �, hence the lower limit.)

given by equation (A 2) with � = 1 and when individuals
do not allocate any time to coordination (c = 0). We
denote by 
u the associated payoff. We next compute the
ESS when the coefficient of variation of the ISI is � � 1
and animals allocate some time to coordination, c � 0. In
these calculations, we assume that � and c are fixed. Ani-
mals must spend a proportion c of their time coordinating
their scans, and the coefficient of variation of the ISI is �
as a result. The only strategic variable that the animals
have is w. (Notice that, in this scenario, animals must
spend the coordination time even if they choose not to
scan.) We denote by 
(�,c) the associated payoff for this
new set of strategies. For � � 1, because coordinated
scanning is more efficient than uncoordinated scanning
(Ward 1985; Lima 1990), we have 
(�,0) � 
u. As the
coordination time increases, however, the payoff
decreases. So for every value of � � 1 there is a coordi-
nation time c(�) such that 
(�,c(�)) = 
u. Figure 2 shows
the relationship between c(�) and � for different values of
the group size n and of the scanning efficiency b. This
maximum coordination time for which coordination leads
to a greater fitness than uncoordinated scans is a decreas-
ing value of �. This was to be expected: the benefit of
coordination increases as � decreases, and the higher the
benefit obtained from coordination, the higher the cost
that can be paid for it. Increasing the probability b that a
predator attack is successful even if the predator is
detected reduces the maximum cost that can be paid for
coordination. It also decreases the proportion of time
spent scanning for predators at the ESS (data not shown,
but see, for example, Pulliam et al. (1982) and McNamara &
Houston (1992)). The range of variability of c(�) with b
is highest for n = 2 and decreases as group size increases.
Other than that, group size has remarkably little effect on
c(�). Contrary to what Ward (1985) suggests, good coor-
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Figure 2. Maximum coordination time c(�) for which
expected survival at the coordinated ESS is higher than
survival at the uncoordinated ESS versus the coefficient of
variation of the distribution of ISIs, �. The three panels
correspond to different group sizes, (a) n = 2, (b) n = 4 and
(c) n = 8. For each group size, the data show c(�) for
different values of the probability that a predator attack is
successful even if the predator is detected: b = 0.1 (black
diamonds); b = 0.3 (black squares); and b = 0.5 (open
circles).

dination (low �) can be very efficient: group members
must spend ca. 30% of their time coordinating their
behaviour before coordination is less efficient than unco-
ordinated scanning.

4. STABILITY OF COORDINATED SCANNING

The value of c(�) gives us an indication of the efficiency
of scan coordination, but it tells us little about its evol-
utionary stability. As a first approximation to study the
stability of scan coordination, we consider the following
problem. As in the previous section, we assume that ani-
mals must spend a proportion c of their time coordinating
their scans and the coefficient of variation of the ISI is �
as a result, where both � and c are fixed. We calculate the
proportion of time spent scanning for predators at the ESS
and the payoff that all group members can expect to
obtain at the ESS, 
(�,c). We now introduce a mutant
that scans for predators but spends no time coordinating
its anti-predator behaviour. This mutant can adjust its
behaviour in such a way as to maximize its expected pay-
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off, 
u(�,c), and we ask whether this mutant achieves a
higher fitness (
u(�,c) � 
(�,c)) than its flock mates. To
calculate the optimal behaviour of the mutant, and its
expected fitness, we must calculate the probability that a
predator arrives undetected to the foraging group, �.
Because the mutant scans independently from its flock
members, we can assume that the probability that the
predator is not detected is the product of two factors: the
probability that the mutant does not detect the predator
(calculated according to equation (2.1) for a lone forager)
and the probability that its group members do not detect
the predator. We calculate this latter probability from equ-
ation (A 2) for n� 1 foraging animals. When the cost of
coordinating scans, c, is low, we have 
u(�,c) � 
(�,c):
coordination is stable against these mutants. But when c
increases, 
(�,c) decreases, and for very high coordination
times we obtain 
u(�,c) � 
 (�,c). Figure 3 shows the
relationship between gamma and the maximum coordi-
nation time for which coordination is stable. Coordination
is relatively stable against these mutants if most ISIs have
the same duration (low �), particularly if scanning is
efficient (low b). But the coordination time required to
make coordination unstable decreases quickly as coordi-
nation deteriorates (� increases). This is particularly true
for large groups.

5. FINDING THE EVOLUTIONARILY STABLE
STRATEGY

In the previous section, we have considered the stability
of coordinated anti-predator behaviour when animals
must choose either to spend the full coordination time or
to completely withdraw from coordination. In practice, it
seems possible that animals can choose how much of their
time to spend in coordination in a continuous fashion. In
a flock where all birds spend a fraction c of their time
coordinating their anti-predator scans, the optimal behav-
iour of a focal individual may well be to spend a fraction
c� of its time in coordination, where c� � 0 and c� � c.

When individuals can adjust the proportion of w and c,
the ESS will be a pair (c∗,w∗), such that when n � 1 group
members play (c∗,w∗), the optimal behaviour of the
remaining individual is to play (c�,w�) = (c∗,w∗). To calcu-
late (c�,w�), we need to know the relationship between c
and the ensuing temporal distribution of ISI, as given by �.
If all group members spend a proportion c of time coordi-
nating their behaviour, there will be some relationship
� = g(c) between time spent coordinating and ISI varia-
bility. If n� 1 group members play c and the remaining
individual plays c� � c, the ensuing value of � will be a
function h(c,c�) of both c and c�. For c� = 0 (i.e. n� 1 indi-
viduals coordinate and the remaining individual has an
exponential distribution of ISIs, as in the previous
section), it can be shown numerically that

�0 = a �
1 � a

1 � 0.6 × (1/g(c)2 � 1)
, (5.1)

provides an excellent approximation to h(c,0) if

a = 0.15 �
0.85

1 � 0.6 × (n � 1)
. (5.2)
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Figure 3. Maximum coordination time for which expected
survival at the coordinated ESS is higher than survival for a
mutant that does not spend the coordination time plotted
versus the coefficient of variation of the distribution of ISIs, �.
The three panels correspond to different group sizes,
(a) n = 2 , (b) n = 4 and (c) n = 8. For each group size, the
data show c(�) for different values of the probability that a
predator attack is successful even if the predator is detected;
b = 0.1 (black diamonds); b = 0.3 (black squares); and b = 0.5
(open circles).

We also know that h(c,c�) = g(c). The precise shapes of
g(c) and h(c,c�) will depend on the mechanism that indi-
viduals follow to achieve coordination. We look for the
ESS when

g(c) = 0.05 � 0.95 × exp(�m × c), (5.3)

where m is the steepness of g(c) (equivalent to its slope
when g(c) is a linear function), and

h(c,c�) = max�0.05,�0 × exp�log�g(c)�0
� ×
c�
c��. (5.4)

We set the minimum possible value of g and h equal to
0.05 to avoid overflows in the numerical calculations. The
function g shows diminishing returns, in the sense that a
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Figure 4. Proportion of time spent coordinating the scans, c,
at the ESS when g(c) = 0.05 � 0.95 × exp (�m × c) and
(a) m = 8 or (b) m = 16. The figure shows c versus n, for:
b = 0.1 (black diamonds); b = 0.3 (black circles); and b = 0.5
(open circles).

fixed increment in coordination time has a larger impact
when the coordination time, c, is low than when it is large.
The same is true of the relationship between h and c�.
For large values of m in equation (5.3), a relatively low
coordination time leads to highly coordinated scanning
behaviour, while for low m a large fraction of available
time must be invested into coordination in order to obtain
regular ISIs. At the ESS, coordination (c∗ � 0) is present
for m � 4. Coordination is favoured by high coordination
efficiency (large m), high scanning efficiency (low b) and
small group size (low n). Figure 4 shows coordination time
at the ESS for b = 0.1, 0.3 and 0.5 and m = 8 and 16.

Using linear relationships instead of equations (5.3) and
(5.4) leads to similar trends. When both g and h are linear
functions, coordination at the ESS tends to be absent or
reach its maximum value (� = 0.05). When g is given by
equation (5.3), a linear relationship between h and c� dis-
rupts coordination (in the sense that coordination breaks
down for lower group sizes than when equation (5.4) is
used).

6. ATTAINABILITY OF THE EVOLUTIONARILY
STABLE STRATEGY

In the absence of a mechanistic model that tells us how
group-level coordination is obtained from individual
behaviour, it is difficult to ascertain whether the coordin-
ating ESS can be reached by starting with a population of
non-coordinating individuals. It is possible, however, to
study the conditions under which a coordinating mutant
can invade a population of non-coordinators. Consider a
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population where scanning behaviour is not coordinated
(� = 1). At the non-coordinating ESS, each individual
obtains a payoff 
u. We introduce into this population a
‘coordinator’. Because the behaviour of group mates is
unpredictable, we will consider a mutant that spaces
evenly in time its own scans. (More precisely, the ISIs of
the mutant have a modified gamma distribution with coef-
ficient of variation � � 1.) Because the mutant behaves
independently from other group members, the probability
that the predator reaches the flock undetected is the pro-
duct of the probabilities that it is not detected by the
mutant and by its group mates. Assuming that the mutant
must spend a proportion c of its time in timing its behav-
iour, it can adjust the amount of time it dedicates to scan-
ning, w, in order to maximize its payoff. The maximum
expected payoff of the mutant is a decreasing function of c.
For c = 0, the payoff of the mutant is larger or equal than
the wild-type payoff in a group without mutants. As
coordination time increases, there is a point where both
payoffs are equal, and for larger values of c the payoff of
the mutant is lower than the wild-type payoff. Figure 5
shows the coordination time, c, for which the mutant and
wild-type payoffs are equal versus the coefficient of vari-
ation of the mutant’s distribution of ISIs, �. Coordinating
mutants can invade when the coordination time associated
with timing their scans lies below the curves of the figure.

Combining the results of figures 4 and 5, we can
conclude that, if the relationship between time spent
timing one’s behaviour and the ensuing distribution of
ISIs is given by the function g(c) of equation (A 2), non-
coordinating would be a stable ESS for all situations
considered in figure 4. It seems, however, unlikely that
spacing out one’s scans, independently of other group
members, should be so costly.

7. DISCUSSION

Previous game-theory models of anti-predator vigilance
assumed independent scanning for mathematical con-
venience (Bednekoff & Lima 1998). Our model shows
that coordinating anti-predator scans among group mem-
bers can be more efficient than independent scanning even
if individuals must spend a large share of their time coordi-
nating their behaviour (figure 2), contrary to the results
of Ward (1985). Efficiency, however, does not guarantee
stability. Although figure 3 indicates that coordinating
anti-predator scans might be rather robust, this result does
not hold under closer scrutiny. The problem is that, when
drawing figure 3, we have assumed that animals can
choose between coordinating their behaviour or not doing
so in an all-or-nothing fashion. When this restriction is
imposed, coordination ensues unless the time that animals
must allocate to coordination is relatively high (figure 3).
A different picture appears when animals can make small
adjustments to their coordination effort. Here, it often
pays to spend a little less than one’s flock mates in coordi-
nating anti-predator scans. The result is that, at the ESS,
there may be little or no coordination. The absence of
coordination at the ESS is particularly noticeable for large
groups and when detecting the predator helps little to
escape the attack (a large probability b that the detected
predator captures a foraging animal). Coordination
increases the efficiency of scanning but it is costly to achi-

Proc. R. Soc. Lond. B (2002)

0.15

0.10

0.05

0

0.15

0.10

0.05

0.15

0.10

0.05

0

0
0.2 0.4 0.6 0.8 1.0

coefficient of variation of ISIs

m
ax

im
um

 c
oo

rd
in

at
io

n 
ti

m
e 

fo
r 

w
hi

ch
 c

oo
rd

in
at

or
s 

ca
n 

in
va

de
 a

 n
on

-c
oo

rd
in

at
in

g 
po

pu
la

ti
on

(a)

(b)

(c)

Figure 5. Maximum coordination time that a mutant can
spend to space its ISIs with coefficient of variation � if it is
to achieve a higher payoff than its non-coordinating group
mates. The three panels correspond to different group sizes,
(a) n = 2, (b) n = 4 and (c) n = 8. For each group size, the
data show c(�) for different values of the probability that a
predator attack is successful even if the predator is detected:
b = 0.1 (black diamonds); b = 0.3 (black squares); and b = 0.5
(open circles).

eve and is prone to cheating, because individuals that do
not coordinate their scanning still benefit from the coordi-
nation of other group members. It is therefore not surpris-
ing that coordination becomes less and less likely as group
size increases, as it has been shown in theoretical models
of cooperation (Boyd & Richerson 1988).

Still, according to the model we should observe coordi-
nated scanning for small groups and, when scanning is
efficient (low b), even for relatively large groups (figure 4).
The absence of coordination among group foragers may
have different explanations. First, if self-timing were
costly, the coordinating ESS might not be attainable
(figure 5) and non-coordinating would be the only ESS.
It seems, however, unlikely that spacing one’s scans evenly
in time should be so wasteful. A more likely explanation
may be that the unpredictability of scans is required to
avoid stalking predators (see Bednekoff & Lima (1998)
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and references therein). Notice, however, that even when
fooling stalking predators is a must, coordination may still
be useful to decrease the proportion of time when several
group members are simultaneously scanning. Further-
more, a gamma distribution of ISI conserves some ran-
domness so long as the coefficient of variation of the ISI
is greater than zero (see Scannell et al. (2001) for
discussion).

Although our model does not propose any individual-
based mechanism that leads to group-level coordination,
Ferriere et al. (1996, 1999) suggest an interesting possi-
bility (but see Ruxton & Roberts 1999). They envisage a
pair of animals foraging together. One of them scans for
predators with chaotic dynamics. The other, called the
coordinator, can therefore make relatively accurate short-
term predictions concerning the duration of the ISI, and
adjusts its own behaviour accordingly in order to coordi-
nate their anti-predator behaviour. Although this possi-
bility deserves further study, we must point out a number
of shortcomings. First, the coordinator must have, at all
times, precise information on the duration of the last ISI
performed by its companion. This information is presum-
ably rather costly to obtain, contrary to what Ferriere et
al. (1996, 1999) suggest. Second, this model tells us little
about the conditions under which the coordinator strategy
can invade (two or more coordinators do not work well
together). Finally, it seems difficult to implement the coor-
dinator strategy. Time estimation is a noisy process (see
Gibbon et al. (1984) for details). Humans in controlled
laboratory conditions make estimation errors in the order
of 18–20% (e.g. Rodrı́guez-Gironés & Kacelnik 2001).
The error is greater (20–25%) for animals solving time-
estimation tasks, and for animals that must forage at the
same time as they estimate the ISI of their flock mates, it
is unlikely to be any smaller. Errors of the order of 20%
or more in the estimation of the ISI may seriously damage
the applicability of the coordinator strategy proposed by
Ferriere et al. (1996).

Another mechanistic model that is definitely worth
looking into is the one by Barh & Bekoff (1999). In this
model, individuals determine their behaviour (foraging or
scanning for predators) on the basis of the behaviour of
their nearest neighbours. This model finds ‘coordination’
among group members and claims that such coordination
has actually been observed in the field (data from Bekoff
(1995)), but for these authors ‘less coordination… means
that there were fewer instances when all the birds… were
scanning or not scanning at the same time’ (Bekoff 1995).
That is, according to this definition there is coordination
when all birds do the same thing at the same time.
Although this is indeed a form of coordination, it has little
to do with what most articles on predator scanning under-
stand by coordination (what Bertram (1980) calls sequen-
tial organization) and we prefer to refer to it as
synchronization. Indeed, coordination as understood by
Bekoff (1995) is extremely wasteful from a functional per-
spective. Although the precise behavioural rule used by
Barh & Bekoff (1999) in their model does not lead to
coordination as we understand it, and even if this rule is
most probably not evolutionarily stable, their modelling
approach can be extended in order to look for evol-
utionarily stable behavioural rules. Besides, because some
degree of synchronization has also been observed by
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Lazarus (1979) and Bertram (1980), we must either ident-
ify a factor favouring synchronization or, possibly, change
gear and concentrate on more mechanistic models of anti-
predator scanning.

Although rare in loose foraging groups, coordination
seems to occur in other contexts. For example, sentinel
behaviour in socially structured groups, where individuals
spend prolonged periods scanning continuously from elev-
ated positions where they are highly visible by other group
members, tends to occur in an alternating fashion (e.g.
McGowan & Woolfenden (1989) for birds and Rasa
(1986) and Clutton-Brock et al. (1999) for mammals).
Bednekoff (1997) developed a theoretical model of senti-
nel behaviour and showed that, when sentinels are safe
and they efficiently communicate detection information,
sentinel behaviour becomes highly coordinated in an
organized rota, and group members alternate into non-
overlapping vigilance bouts (see also Bednekoff 2001).
Therefore, it seems that coordination can occur when
coordination is inexpensive or extremely efficient, and
social cohesion and ecological conditions allow efficient
sharing of detection information.

This study was funded by FONDECYT (Chile) 1990049,
7990034 and it is a contribution to the Millennium Centre for
Advanced Studies in Ecology and Research in Biodiversity
P99-103-F-ICM. This is NIOO-KNAW publication no. 2983
of the Netherlands Institute of Ecology.

APPENDIX A: CALCULATING THE PROBABILITY
OF DETECTING PREDATORS

We assume that the ISIs are random samples the prob-
ability density function of which corresponds to a gamma
distribution with offset. Specifically, we assume that the
probability that an ISI lasts x is f(x � �/n|, �) if x � �/n,
and zero otherwise, where f(x|, �) is the gamma distri-
bution with parameters  and �,

f(x	,�) =
�

�()
× x�1 × e�� × x (x � 0). (A 1)

Notice that the introduction of the offset �/n ensures
that, at any point in time, there are at most n individ-
uals scanning.

To calculate the probability that a predator is not
detected, we proceed as follows. Let t be the time when
the predator starts its attack. If scans are initiated at times
t1, t2…, let ti � t � ti�1. Hence, the predator initiates its
attack between the initiation of the ith and (i � 1)th scans.
For the predator to be undetected, two conditions must
be satisfied: (i) it must start its attack after the ith scan is
over (t � ti��), and (ii) it must finish its attack before the
(i� 1)th scan starts (t � T � ti�1). If predator attacks fol-
low a Poisson process, they are independent of the
initiation of scan events. Hence, the probability that con-
ditions (i) and (ii) are verified simultaneously is equal to
the proportion of time during which they can be satisfied,
(ti�1 � ti � T � �)/(ti�1 � ti). Because ti�1 � ti is the ISI,
when we multiply by the probability that the ISI lasts some
time x = ti�1 � ti and integrate over all possible durations
of the ISI for which (i) and (ii) can be simultaneously veri-
fied, we obtain
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� = 
 �

T�� × (1�1/n)

x
E(x)

× f �x�
�

n|,�� ×
x� T� � × (1 � 1/n)

x
× dx.

(A 2)

For n = 1, this equation is a particular case of equation
6 in Lendrem (1986). Lendrem gives a more detailed
explanation of how equation (A 2) is derived (see also
Hart & Lendrem 1984). Notice, however, that he calcu-
lates the probability that the predator is detected (i.e.
1 � �) and that his definition of the ISI is slightly different
from the one used here.

To calculate �, it remains to be seen how  and � are
related to individual behaviour. For a gamma distribution,
� = �0.5. Therefore,  =��2. In this model, � will depend
on the amount of time spent coordinating, but not on the
amount of time spent scanning. Notice that � is not
exactly the coefficient of variation of the ISI, but rather of
their random part. We calculate � from the relationship
between the average duration of the ISI (/� � �/n) and
the proportion of time spent scanning by group mem-
bers. Namely,

�
i

wi =
�

E(x)
=

�



�
�

�

n

. (A 3)

It is easy to check that for  = 1 and when � is given by
equation (A 3), equation (A 2) is identical to equation (2.1)
for a lone forager (n = 1) but not for greater group sizes.
Thus, the uncoordinated ( = 1) gamma distribution with
offset is only identical to Pulliam et al.’s (1982) model
for n = 1.
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